
Web Services Workflow for Online Data
Visualization and Analyis in Giovanni

S. Berrick, M. Butler, J. Farley, J. Hosler, L. Lighty, H. Rui

NASA Goddard Space Flight Center
Code 610.2, Greenbelt, MD, 20771

Abstract— The Goddard Earth Sciences (GES) Data and
Information Services Center (DISC) is undertaking an
architectural upgrade of its GES-DISC Interactive Online
Visualization ANd aNalysis Infrastructure or "Giovanni" to
take it from a synchronous CGI application to an
asynchronous Web services workflow management system.
Because Giovanni has been enormously successful from a user
standpoint, increased interest in its usage and user feedback
resulted in new requirements for extensibility and scalability.
Giovanni’s success has also spawned numerous new science
requirements. The assessment of the new requirements has
determined that they cannot be implemented well without
architectural revisions to Giovanni. This has resulted in a new
architectural concept denoted as Giovanni 3. The goals of the
Giovanni 3 architecture include support for remote data via
standard protocols such as OPeNDAP, GrADS Data Server
(GDS), and Web services; processing and rendering via
standard Web services; workflow management that allows
users to modify and save their own workflows; a customizable
and context-sensitive component based interface; and
asynchronous processing.

Keywords-distributed data analysis; data visualization; Web
applications; online

I. INTRODUCTION

A continuing challenge at NASA is how to provide
science users with a meaningful way to distill knowledge
from the petabytes of multi-sensor Earth science data
available without requiring users to first download large
volumes of data, understand their formats and structure, and
only then perform the necessary analysis. Traditional
approaches such as data mining are key, but services that
allow users to explore data through analysis and visualization
are equally important. To address this need, the Goddard
Earth Sciences Data and Information Services Center (GES
DISC) developed the GES-DISC Interactive Online
Visualization ANd aNalysis Infrastructure or “Giovanni”.
The first instance of Giovanni debuted in the summer of
2002 with the TRMM (Tropical Rainfall Measuring Mission)
Online Visualization and Analysis System (TOVAS)
targeted to the precipitation science community. TOVAS
was extremely successful and led the way for additional
Giovanni instances targeting other Earth science
communities.

The initial architecture of Giovanni (now, referred to as
Giovanni 2) was based on CGI Perl scripts, HTML

templates, and GrADS (Grid Analysis and Display System)
[1] scripts for doing the actual processing and image
rendering. A series of hierarchical configuration files defined
the datasets and parameters, functions, and image rendering
options for each Giovanni instance. In principle, the addition
of a new data set or function to an existing Giovanni
interface was as simple as making a few modifications to the
configuration files followed by a regeneration of the instance
using a Perl script. In practice, however, the process was not
so simple.

II. GIOVANNI 2 LIMITATIONS

The Giovanni 2 architecture was deployed widely at the

GES DISC [2] to ultimately support nine instances and was
enormously successful in terms of user satisfaction. With
requirements expansion because of the increased science
community interest, the architectural limitations with respect
to extensibility and scalability became apparent.
Incorporating new requirements within the current Giovanni
architecture appeared to be increasingly expensive in
maintenance costs. Moreover, the Giovanni 2 architecture
was needlessly restrictive in dealing with science
requirements:

A. Configuration Complexity
The hierarchical configuration files supporting the

Giovanni instances grew ever more complex as new features,
based on new science requirements, were added to the
interface to provide users with an increasing set of
customization options. In addition, the user had no control
over the options or what data were available; these all had to
be preset by the developers.

B. Supports Only GrADS
The scripting language used in Giovanni, GrADS,

supported both the processing and the image rendering.
Although well suited for Level 3 gridded data, GrADS has
limitations in supporting Level 2 data, something our data
users were eager to have available in Giovanni.

C. Synchronous Interface
The synchronous nature of the Web interface meant that

processing and image rendering had to be fast enough to not
cause an HTTP session time-out. Workarounds included
keeping the data on the local machine or preprocessing the

data to improve access performance; and restricting the
amount of processing available to the user (either by
providing only coarse resolution data or by restricting the
spatial area).

D. No Pluggable Interface
The infrastructure did not provide a means for science

users or even Giovanni maintainers to plug in new
processing or image rendering code according to well-
defined documented interfaces. This resulted in increased
costs in extending the processing capabilities of Giovanni.

III. GIOVANNI 3 REQUIREMENTS

As a result of the described Giovanni 2 limitations and
other considerations, a new Giovanni architectural vision
emerged known as Giovanni 3. The requirements for
Giovanni 3 are:

• Clear separation between infrastructure and

processing/rendering - Further, the architecture
should be agnostic with respect to processing or
image rendering software.

• Data location transparency – The architecture should
work with local or remote data via standard
protocols such as OPeNDAP (Open-source Network
for a Data Access Protocol) [3].

• Asynchronous – The architecture should move
beyond the restrictive synchronous CGI paradigm to
allow more complex processing supported by RSS
feeds to alert a user when the product is available.

• Workflow – Processing should be managed using a
workflow paradigm that allows the user to modify
existing workflows, create new ones, and save them
for future executions.

• Service Oriented Architecture – The architecture
should use well-defined XML-based interfaces for
adding/deleting data sets or parameters and
adding/deleting processing or image rendering
functions.

• User Configurable Interface – The architecture
should be based on configurable, context-sensitive
components and allow the user to create, modify,
and save the interface configurations. In short,
support a “My Giovanni” concept.

• Data Lineage – The architecture should be able to
provide the user with the detailed processing steps
involved in going from the initial product to the final
product or image [5].

IV. ARCHITECTURE

The Giovanni 3 architecture represented as a Functional
Diagram is shown in Fig. 1.

Fig. 1 – Giovanni 3 Functional Architecture

The Giovanni 3 architecture is designed to deal with
specific Giovanni 2 limitations: To ease configuration
complexity by providing the Giovanni support staff and users
with a simple way to add new instances, services, and
datasets; and to allow for more complex processing by
developing an asynchronous form of processing to avoid
HTTP time-outs.

The Giovanni 3 Graphical User Interface (GUI) utilizes a
Web server, CGI scripts, style sheets, HTML templates,
server side includes (SSI), and a configuration database to
create a dynamic, interactive environment for the user. The
Web page content is dynamically generated using a
combination of CGI and database scripts. Rules are set using
database schemas to only allow the pertinent parameters and
services (processing and image rendering functions) to be
used for a specific instance.

Currently scripts are used to manage the database
configuration. In the future, however, there will be an XML
representation of the database. Users will be able to save this
XML-based database to their local machines and create their
own “My Giovanni” configurations, and there will be a GUI
in place to allow users to manage them. It should be noted
that a GUI is not required to execute a workflow. It can also
be executed from the command line or, in the future, via a
Web Service.

A workflow is a series of discrete processing steps that
together generate a product (e.g. an image) where each
processing step is defined by its inputs, outputs, and a
transformation in the form of an algorithm. The workflow
management layer of Fig. 1 is logically divided into
workflow construction and workflow execution. Workflow
construction is performed as an off-line activity, well in
advance of executing the workflow via a workflow engine.

Workflow construction allows the user to build a network
of pre-defined services which will be executed at runtime.
Each service in the workflow is defined in Service
Description Language (SDL), our XML representation of the
service to be executed. SDL provides the capability to
execute command-line programs, Web Services via WSDL,
as well as Perl and Python functions. A workflow is
constructed by specifying the services to be executed in a
workflow recipe with an XML representation. The SDL
representation of a service provides:

• A URL to an XML Schema (XSchema format) that
describes the inputs and outputs of the service.

• A binding section that specifies how to execute the
service.

• A URL to a description of the processing provided
by the service. This description is used by the GUI to
present the data lineage of the data produced by the
workflow.

Once a workflow recipe has been constructed,
information required to execute the workflow is exported to
the Configuration Database where it is used by the user
interface (UI) software to dynamically construct an
appropriate graphical user interface (GUI). When a user
comes to the Giovanni 3 landing page, an initial script is run
to access the database. The user is redirected to a Web page
that shows all of the currently available Giovanni instances.
When the user clicks on an instance, another script is
launched which generates a page showing the name of the
instance, an introductory paragraph about the data, and a
Web form that lists all of the available parameters, services,
and associated options for that instance.

When the user has selected the inputs for the workflow
from the GUI, the UI software creates an XML
representation of the inputs and initiates execution of the
appropriate workflow.

During this waiting period, the user is redirected to an
execution status page. If the user chooses not to wait for the
results, the system can automatically notify the user of
processing completion through the use of Really Simple
Syndication (RSS). During workflow processing, Giovanni
updates a unique user RSS XML feed to indicate changes in
the workflow state. Upon completion of the workflow
processing, a link to the resultant product (typically an
image) is placed into the RSS feed. The use of RSS provides
the user with an asynchronous method of obtaining their
product, and eliminates dependencies on HTTP time
limitations. In cases where the processing is fast, the RSS
mechanism is bypassed and the user gets the resultant
product within the current HTTP session; the processing
appears to be synchronous.

Currently a workflow engine does not perform workflow
execution. Our intent is not to develop our own workflow
engine, but to reuse an existing engine. We performed a
survey of currently available engines, with little luck in
finding a perfect match. At present we are targeting the
SciFlo engine that is being developed at JPL by the Global

Environmental and Earth Science Investigation System
(GENESIS) Project [4]. At the time of this writing, the
SciFlo engine had not yet been released. In the meantime, we
have constructed a workflow script generator (genscript) that
can read a workflow recipe file (styled according to that
defined in SciFlo [4]) and generate a Perl script that can
execute the workflow. This allows us to continue
development with a focus on the services to be provided and
how well they work within a workflow framework, without
actually having a workflow engine.

When the GUI executes a workflow script, an XML
workflow document is created for that specific execution.
The workflow document contains all information needed to
execute the workflow including user inputs as well as a
description of the network of services to be executed. As
each service is executed, it is responsible for updating its
status and outputs in the workflow document. This allows the
workflow document to serve as the state repository for the
executing workflow. A variety of XSL transforms are
provided to present information about the executing
workflow. From the GUI, the user can request the current
status of the workflow. At that point, an XSL style-sheet is
executed on the workflow document which produces an
HTML rendering of the current status. Similarly, an XSL
style-sheet is provided which produces an RSS formatted
XML document. Users can set up their favorite RSS reader
to monitor the status of their request. Each time the RSS
reader attempts to load the RSS document, the style-sheet is
re-executed on the workflow document to produce the latest
status in RSS format.

Simple services can be composited into more complex
services. For example, a variety of “averaging” services are
available in the Giovanni 3 system (modeled after averaging
algorithms in Giovanni 2). The different instances of an
averaging service can operate on specific data structures.
The implementation of an averaging service that operates on
Level 3 regularly spaced gridded data is very different from
one that operates on Level 2 swath data. In the Giovanni
system, both of these services conform to the same schema
that specifies the inputs and outputs of the averaging
operation without any details of the implementation. This
allows us to build a composite averaging service, which can
call the appropriate low-level averaging service based upon
the structure type of the data to be averaged.

In order to automate the composite service, a detailed
description of the data is provided in a Data Description
Language (DDL). The DDL for a data product describes the
contents, structure, and relationships of a specified data
product. In the case of the composite averaging service, by
looking in the DDL for the structure of the input data, the
composite service can automatically call the correct low-
level service.

 Fig. 2 – Sample Workflow Schematics

Fig. 2 shows a diagrammatic example of a simple
workflow, and the simplicity of constructing workflows from
pre-defined services. The first step in the workflow is to call
the data retrieval service. This service will retrieve the data
from its original location into a local cache via a call to the
appropriate low-level retrieval service. The second step in
the workflow calls a calculator service to compute a pixel-
by-pixel average over the range of the retrieved data. The
final step in the workflow is an Image Renderer that
produces a plot of the area-averaged data that is suitable for
display in a Web browser. As shown in the figure, the area
average service can easily be replaced with a statistics
calculator service that produces minimum, maximum,
average, and standard deviation statistics from the input data.
This new workflow would then produce image renderings of
the statistics data. The data retrieval and rendering services
are identical in the two workflows, but the resulting images
are very different.

A variety of pre-built services are provided for
construction of Giovanni workflows. These services can be
categorized as:

• Data Retrieval – A composite data retrieval service
is provided to fetch data from its source location into
a temporary cache. Low-level services are available
for retrieving data via HTTP, FTP, and OPeNDAP
protocols.

• Data Transform – A variety of transform services are
provided to manipulate the retrieved data. Available
transforms include scaling, subsetting, and re-
gridding.

• Calculation – Calculator services are provided to
average, subtract, add, and generate statistics for the
input data.

• Filter – Various filter services are provided to select
a subset of the input data.

• Rendering – Services that render images in GIF,
PNG, GeoTIFF and other formats are provided to
output data in ways that are easy to display and print.

• Packaging - For users who want the raw data, instead
of images, packaging services are provided to deliver
the outputs of a workflow in ASCII, binary, or HDF
formats.

More services will be provided over time. The list of new
services to be developed is periodically re-prioritized to meet
the upcoming needs of the GES DISC.

ACKNOWLEDGMENT
The GES DISC would like to acknowledge the Giovanni
core team who developed Giovanni 2 without which
Giovanni 3 would not exist. This team, lead by Ms. Hualan
Rui consists of Timothy Dorman, Dr. Zhong Liu, Dr. Suhung
Shen, Xiaoping Zhang, and Ms. Tong Zhu. Equally
important are the GES DISC Atmospheric scientists Dr.
James Acker, Dr. Suraiya Ahmad, Arun Gopalan, James
Johnson, Dr. Gregory Leptoukh, Jason Li, Dr. Jianping
Mao, Dr. Andrey Savtchenko, and Dr. William Teng,

The GES DISC wishes also to thank Dr. Yoram Kaufman
(NASA GSFC) for his financial and scientific support of the
MODIS Online Visualization and Analysis System
(MOVAS) development effort. The Ocean Color Online
Visualization and Analysis system (OOVAS) was supported
by NASA HQ and Dr. Watson Gregg (NASA GSFC)
through REASoN CAN 02-OES-01. The Agricultural Online
Visualization and Analysis System (AOVAS) was also
supported by REASoN CAN 02-OES-01.

REFERENCES

[1] GrADS Home Page, http://www.iges.org/grads/.

[2] Berrick, S., L. Pham, G. Leptoukh, Z. Liu, H. Rui, S.
Shen, W. Teng, T. Zhu, 2004. Multi-Sensor Distributive
On-line Processing Visualization and Analysis System
Using Giovanni, IGARSS conference, Anchorage, AK
Sep 15-24.

[3] OPeNDAP Home Page, http://www.opendap.org.

[4] GENESIS SciFlo Home Page, http://sciflo.jpl.nasa.gov.

[5] Bose, R., and Frew, J., 2004. Composing Lineage
Metadata with XML for Custom Satellite-Derived Data
Products, Sixteenth International Conference on
Scientific and Statistical Database Management,
Santorini Island, Greece, 21-23 June 2004.

Data
Retrieval
Service

Area
Average
Service

Image
Renderer
Service

Simple
AreaPlot
Workflow

Data
Retrieval
Service

Statistics
Calculator

Service

Image
Renderer
Service

Simple
Statistics
Workflow

